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Design of unobscured reflective zoom system
with three mirrors
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A method for the design of an unobscured reflective zoom system with three mirrors is described. This
method applies the vector aberration theory, which helps designers analyze third-order aberrations for
optical systems with decentered and tilted surfaces. As the vector aberration theory presents the variation
of third-order aberrations in asymmetric systems through analytic expressions, real ray tracing is unnec-
essary. Hence, the design with vector aberration theory is faster, and the analytic expressions are more
comprehensive and intuitive. To demonstrate the practicability of the method, a design example is given,
which shows that the presented method can guide designers achieve a good unobscured reflective zoom
system with three mirrors.
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All reflective zoom systems have the advantages of low
weight, high transmission, uniform performance over a
broad spectral band[1], radiation resistance, and thermal
stability compared with refractive zoom systems. How-
ever, the obscurations in traditional co-axial reflective
systems have made the design of zoom systems with large
field of view difficult, and in some cases, impossible to
handle. In order to eliminate obscurations, decenters and
tilts of the mirrors were incorporated into asymmetric
system designs[2]. However, due to the lack of rotational
symmetry, the classical theory of Seidel aberrations has
become unsuitable for the design of such systems.

Buchroeder described a class of non-axially sym-
metric systems constructed from axially-symmetric
components[3]. With the vector aberration mentioned in
Ref. [4], final system aberration fields could be located
and analyzed[5−8]. Later, Rogers made some further
developments[9−11]. With the emergence of high-speed
computers, real ray tracing has become very fast, accu-
rate, and cheap. Users can now employ real rays to con-
struct the merit function for design optimization. How-
ever, compared with real ray tracing, the vector aberra-
tion theory could provide for the relationships between
decenters and tilts, and change third-order aberrations
through analytic expressions; these could help greatly in
the initial stage of the design[12]. In practice, the vector
aberration theory has always been used to design off-axis
reflective systems with fixed focal length. However, it is
seldom used in the design of zoom reflective systems.

In this letter, we present the vector aberration theory
applied in the design of an unobscured reflective zoom
system with three mirrors. The process of correcting the
coma and astigmatism of a system with decentered and
tilted surfaces is shown by using the vector aberration
theory. A design example is also given to show how one
can achieve a good unobscured reflective zoom system
with three mirrors.

For a centered system, the third-order aberration con-
tribution from the jth surface can be written in polar

form as[13]

Wj(H, ρ, ρ cosφ) = W040jρ
4 + W131jHρ3 cosφ

+ W222jH
2ρ2(cosφ)2 + W220jH

2ρ2

+ W311jH
3ρ cosφ, (1)

where H is the field radius coordinate normalized by the
image height in the centered system, ρ is the pupil radius
coordinate normalized by the exit pupil radius, and φ is
the pupil azimuth coordinate with respect to an arbitrar-
ily chosen meridian plane.

To obtain the vector form, we changed the field ra-
dius coordinate and pupil radius coordinate to vectors, as
shown in Fig. 1. In this case, H represents the position
in the image field with Hx and Hy with its components
along x and y, respectively; ρ represents the pupil posi-
tion with ρx and ρy with its components along x and y,
respectively.

The third-order aberration contribution from the jth
surface in vector form is given by

Wj(H, ρ) = W040j(ρ · ρ)2 + W131j(H · ρ)(ρ · ρ)

+ W222j(H · ρ)2 + W220j(H ·H)(ρ · ρ)
+ W311j(H ·H)(H · ρ). (2)

In asymmetric systems, centers of wave-front aberra-
tion contributions from different surfaces do not coincide

Fig. 1. Definition of H and ρ.
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at H = 0. They are displaced on the image plane. The
displacement of the jth surface is denoted by a vector σj ,
which is the projection of a line connecting the center of
the pupil for the jth surface with the center of curvature
of that surface to the image plane[5]. The pupil for the
jth surface is the image of the entrance pupil formed by
the optical surface numbers from 1 to j−1. The pupil
for the first surface is the entrance pupil of the optical
system. Thus, in asymmetric systems, the third-order
aberration contribution from the jth surface becomes[14]

Wj(H, ρ) = W040j(ρ · ρ)2 + W131j [(H − σj) · ρ](ρ · ρ)

+ W222j [(H − σj) · ρ]2

+ W220j [(H − σj) · (H − σj)](ρ · ρ)
+ W311j [(H − σj) · (H − σj)]

[(H − σj) · ρ]. (3)

The spherical aberration, which was unaffected by tilts
or decenters since there was no dependence on field vari-
able, could be written as

Wsph =
m∑

j=1

W040j(ρ · ρ)2. (4)

The coma was defined as

WComa =
m∑

j=1

W131j [(H − σj) · ρ](ρ · ρ)

=






m∑

j=1

W131jH −
m∑

j=1

W131jσj


· ρ


 (ρ · ρ). (5)

We let
m∑

j=1

W131j = W131. When W131 6= 0, Eq. (5) was

rewritten as

WComa = W131

[(
H −

m∑
j=1

W131jσj

W131

)
· ρ

]
(ρ · ρ)

= W131[(H − a131 · ρ](ρ · ρ), (6)

a131 =

m∑
j=1

W131jσj

W131
. (7)

Based on Eq. (6), in asymmetric systems, the center
of third-order coma was changed from H = 0. It was
decided by the vector a131.

Based on Eq. (1) and having recognized that the
term for the medial astigmatic component was W220M =
W220 + 1

2W222, we obtained:

WAst + WCur =
m∑

j=1

W222jH
2ρ2(cos φ)2 +

m∑

j=1

W220jH
2ρ2

=
1
2

m∑

j=1

W222jH
2ρ2 cos(2φ)

+
m∑

j=1

W220MjH
2ρ2. (8)

Using “vector multiplication”[5], A2 = [a exp(iα)]2 =
a2 exp(i2α), Eq. (8) was rewritten in a vector form as

WAst + WCur =
1
2

m∑

j=1

W222jH
2ρ2

+
m∑

j=1

W220Mj(H ·H)2(ρ · ρ)2. (9)

By substituting H − σj for H, Eq. (9) was further
transformed into

WAst + WCur =
1
2

m∑

j=1

W222j(H − σj)2 · ρ2

+
m∑

j=1

W220Mj [(H − σj) · (H − σj)]2

(ρ · ρ)2. (10)

The first term in Eq. (10) denotes astigmatism while
the second term denotes the average field curvature. Sim-
ilar to the coma, after the rearrangement of the first
term, we obtained

WAst =
1
2
W222[(H − a222)2 + b2

222] · ρ2,W222 6= 0, (11)

where

a222 =

m∑
j=1

W222jσj

W222
, b222 =

m∑
j=1

W222jσ
2
j

W222
− a222. (12)

The center of the astigmatism was then decided by

H = a222 ± ib222, where ± ib222 = ±i(b222eiβ)

= b222ei(β±π/2). (13)

Based on Eq. (13), there were generally two zeros or
nodes for astigmatism in asymmetric systems. The sym-
metric system is merely a special case.

The displacement vector σj is a function of the equiv-
alent tilt β0j , which can be expressed as

β0j = βj + cjδvj = cjδcj , (14)

where cj is the curvature of the jth surface, βj is the
tilt of the jth surface, δvj is the decenter of the jth sur-
face, and δcj is the displacement of the center of cur-
vature of the jth surface. Owing to the variable optical
characteristics of a zoom system, we denoted a131p and
(a222 ± ib222)p as the centers of coma and astigmatism,
respectively, for the pth configuration of the zoom sys-
tem. Thus,

a131p = a131p[(σj)p] = a131p(βj , δvj),
j = 1, · · · ,m, (15)

(a222 ± ib222)p = a222p[(σj)p]± ib222p[(σj)p]
= a222p(βj , δvj)± ib222p(βj , δvj),

j = 1, · · · ,m, (16)
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Fig. 2. Correction of coma and astigmatism.

To minimize wavefront aberration, it was desirable for
us to make the center of coma coincide with the center of
the line connecting the two nodes of astigmatism for each
configuration of the zoom system. We employed this by
setting the initial decenter and tilt values of surfaces, i.e.,
a131p = a222p (Fig. 2).

From the abovementioned discussion, it is clear that
the initial layout of an unobscured reflective zoom sys-
tem could be obtained by solving

a131p(βj , δvj)− a222p(βj , δvj) = 0,

j = 1, · · · , m, p = 1, · · · , n, (17)

on the condition that all of the obscurations are elimi-
nated. We could then decide on the decenters and tilts
for all surfaces. Coma and astigmatism could also be cor-
rected.

The vector aberration theory was applied to design an
unobscured reflective zoom system with three mirrors.
This system had a zoom ratio of 4:1. Its entrance pupil
diameter was 37.5 mm, and F/# range was from 4 to 12.
A centered reflective zoom system is shown in Table 1.
However, this system was found unsuitable for applica-
tion due to its unacceptable obscurations. We eliminated
these obscurations by introducing decenters and tilts to
the mirrors under the premise of correcting errors in coma
and astigmatism.

Table 1. Parameters of Centered Reflective Zoom System

Surface Radius (mm) Conic Coefficient Separation (mm)

Stop Infinity 0 200

Primary −340.212 −0.926

−175.640, −156.511, −148.1619
Secondary −81.715 −7.365

198.693, 208.774, 211.626
Tertiary −203.695 −0.029

−208.482, −227.085, −262.881Image Infinity 0

Equivalent tilts, β0j (βj , δvj), j=1, 2, 3, were intro-
duced to the mirrors. They became scalar because the
mirrors were decentered in the Y direction and tilted
around the X axis. To avoid obscurations, a set of equa-
tions and constraints were identified based on Eq. (17):

{ a131,1(βj , δvj) = a222,1(βj , δvj)

a131,2(βj , δvj) = a222,2(βj , δvj), j = 1, 2, 3,

a131,3(βj , δvj) = a222,3(βj , δvj)

(18)

{ β1 + c1δv1 > 0.122

β2 + c2δv2 > 0

β3 + c3δv3 < 0.297

(19)

The values on the right side of the expression (19) are
the equivalent tilts at which no ray was obscured. For
example, by decentering the primary mirror by 13.84
mm in the −Y direction and tilting it around the X axis
by 4.66◦ clockwise, we could eliminate the obscuration
of the primary mirror by the secondary mirror. By sub-
stituting these values into Eq. (14), a minimum value of
0.122 was obtained (see expression (19)).

By solving Eq. (18) and expression (19), a set of initial
values for the decenters and tilts of the mirrors were
obtained (Table 2). These eliminated the obscuration in
the system (Fig. 3). The third-order coma and astigma-
tism of the system were also corrected.

Fig. 3. Reflective zoom system with three mirrors after intro-
ducing initial decenter and tilt values.
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Table 2. Decenters and Tilts of Mirrors

Mirror Decenter (mm) Tilt (deg.)

Primary 1.168 7.196

Secondary −6.045 12.761

Tertiary 4.004 24.126

After simple optimization, a new unobscured reflective
zoom system was achieved. Tables 3 and 4 give the con-
struction parameters of the system, and Fig. 4 shows the
modulation transfer function (MTF) curves for different
zoom positions. From the MTF curves, we see that the
zoom system manifests diffraction-limited image quality.
The changes of the equivalent tilts during the optimiza-
tion were 0.0882 and −0.4421 for the primary and sec-
ondary mirrors, respectively. The values are very small.

Table 3. Parameters of Unobscured System

Mirror Radius (mm)
Aspherical Coefficients

Separation (mm)
Conic, 4th, 6th, 8th, and 10th order coefficient

Stop Infinity 0,0,0,0,0 500

Primary −335.191 −1.132,7.138×10−10, −8.780×10−13, 1.322×10−16, −8.790×10−21

−170.511, −161.685, −157.878,

Secondary −29.7622 −7.405,2.697×10−7, −7.587×10−13, −3.492×10−15, 2.078×10−19

195.335, 206.812, 212.546,

Tertiary −204.497 −0.035,4.647×10−11, −2.111×10−15, −4.345×10−20, 6.736×10−24

−195.356, −205.164, −218.321,
Image Infinity 0,0,0,0,0

Fig. 4. Layout and MTF for the zoom position with (a) wide field of view, (b) middle field of view, and (c) narrow field of view.

Table 4. Decenters and Tilts of Mirrors after
Optimization

Mirror Decenter (mm) Tilt (deg.)

Primary −33.473 6.331

Secondary 11.780 14.345

Tertiary 4.004 24.126

In conclusion, we present a simple and practicable
method for the design of unobscured reflective zoom sys-
tems with three mirrors. By solving a set of equations
under the guidance of the vector aberration, this method
allows for the designation of a set of proper decenters
and tilts for the mirrors. These can remove obscurations

in the zoom system, and can correct coma and astig-
matism at the same time. The method is very quick
and straightforward. The system with the introduced
decenters and tilts can serve as a new starting point for
further optimization of the system.
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